Urban Thermal Comfort


Green Infrastructure
Thermal Comfort
Urban Revitalization
Physiological Equivalent Temperature (PET)

Como Citar

Ramos Goulart, A., Amaro de Souza, C., & Frederico e Silva, C. (2022). Urban Thermal Comfort: Analysis of the Impact of Revitalization Reviva Centro on Urban Microclimate of Campo Grande. Life Style, 8(2), 51–63. https://doi.org/10.19141/2237-3756.lifestyle.v8.n2.p51-63


Green infrastructure is presented in several research as an urban strategy necessary to minimize the negative effects arising from the urbanization process and provide outdoor thermal comfort. The urban revitalization project “Reviva Centro”, proposes the increase of vegetation along “14 de Julho” street, located in downtown Campo Grande, Mato Grosso do Sul, Brazil. In this sense, the aim of this study is to compare two scenarios, corresponding to the previous situations and after the implementation of the urban revitalization project. To compare the scenarios, the Envi-met program was used for 3D modeling and microclimatic simulation. The program simulates climatological interactions between surfaces, plants, and atmosphere, considering four fundamental variables of urban thermal comfort (temperature, relative humidity and wind speed and direction). The analysis and visualization of the results is based on the equivalent physiological temperature (PET), that classifies outdoor human thermal comfort conditions. Based on the results of the simulations, the increase in thermal comfort was provided in relation to cold and heat. At 8 am., an air temperature increases of 6 °C, decreasing the discomfort caused by the cold. At 16 hours the comfort gain is obtained by decreasing the air temperature, with a difference of 4.98 °C, optimizing thermal comfort in the scenario that represents the state after revitalization. The results presented in this research show the benefits of urban vegetation as a strategy to balance the urban microclimate and increase comfort for pedestrians.



ANTOSZEWSKI, P.; SWIERK, D.; KRZYZANIAK, M. Statistical review of quality parameters of blue-green infrastructure elements important in mitigating the effect of the urban heat island in the temperate climate (C) zone. International Journal of Environmental Research and Public Health, Vol. 17, No. 19, 1–36, 2020. https://doi.org/10.3390/ijerph17197093

BENEDICT, M.A.; MCMAHON, E.T. Green Infrastructure: Linking Landscapes and Communities. No place: Island Press, 2006.

BENTON-SHORT, L.; KEELEY, M.; ROWLAND, J. Green infrastructure, green space, and sustainable urbanism: geography’s important role. Urban Geography, Vol. 40, No. 3, 330–351, 2019. https://doi.org/10.1080/02723638.2017.1360105

BOLUND, P.; HUNHAMMAR, S. Ecosystem services in urban areas. No place: no publisher, 1999.

BRUSE, M. ENVI-met 3.0: Updated Model Overview. No. March, 1–12, 2004.

BRUSE, M.; FLEER, H. Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model. Environmental Modelling & Software, Vol. 13, 373–384, 1998. https://doi.org/10.1016/S1364-8152(98)00042-5

CHAROENKIT, S.; YIEMWATTANA, S. Living walls and their contribution to improved thermal comfort and carbon emission reduction: A review. Building and Environment, Vol. 105, 82–94, 2016. https://doi.org/10.1016/j.buildenv.2016.05.031

CODER, K. Identified benefits of community trees & forests. 2011. No place: no publisher, 2011.

DEMUZERE, M.; ORRU, K.; HEIDRICH, O.; OLAZABAL, E.; GENELETTI, D.; ORRU, H.; BHAVE, A. G.; MITTAL, N.; FELIU, E.; FAEHNLE, M. Mitigating and adapting to climate change: Multifunctional and multi-scale assessment of green urban infrastructure. Journal of Environmental Management, Vol. 146, 107–115, 2014. http://dx.doi.org/10.1016/j.jenvman.2014.07.025

ELLIOTT, H.; EON, C.; BREADSELL, J.K. Improving city vitality through urban heat reduction with green infrastructure and design solutions: A systematic literature review. Buildings, Vol. 10, No. 12, 1–30, 2020. https://doi.org/10.3390/buildings10120219

ERELL, E. Urban Greening and Microclimate Modification. In: TAN, Puay Yok; JIM, Chi Yung (Eds.). Greening Cities: Forms and Functions. Singapore: Springer Singapore, 2017, 73–93. https://doi.org/10.1007/978-981-10-4113-6_4

EVOLA, G; GAGLIANO, A; FICHERA, A; MARLETTA, L; MARTINICO, F; NOCERA, F; PAGANO, A. UHI effects and strategies to improve outdoor thermal comfort in dense and old neighbourhoods. 134., 2017., 9th International Conference on Sustainability and Energy in Buildings(SEB), Chania, GREECE, JUL 05-07, 2017. Sustainability in Energy and Buildings 2017 [...]. No place: no publisher, 2017. Vol. 134, 692–701. https://doi.org/10.1016/j.egypro.2017.09.589

FERNANDES, M.T.L.C. Memorial do Projeto de Paisagismo Requalificação da Rua 14 de Julho. 2015.

FREDERICO, C.; SALES, G.L; CRONEMBERGER, J.; GARCIA, A.; HUELVA, E. Simulação , Ambiente e Energia no Espaço Construído. Brasília: Editora Universidade de Brasília Direitos, 2020.

GOOGLE MAPS. 2018. Available at: https://www.google.com/maps/@-20.4633814,-54.6172036,3a,75y,174.05h,86.42t/data=!3m7!1e1!3m5!1sWHZXmCDdCrKs6CkiLMDlGA!2e0!5s20201001T000000!7i13312!8i6656. Accessed on: Aug 5, 2021.

HOPPE, P. The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment. International journal of biometeorology, Vol. 43, No. 2, 71–75, 1999. https://doi.org/10.1007/s004840050118


NIEUWENHUIJSEN, M. J.; BRAUBACH, M. Environmental, health, wellbeing, social and equity effects of urban green space interventions: A meta-narrative evidence synthesis. Environment International, Vol. 130, 104923, 2019. https://doi.org/10.1016/j.envint.2019.104923

JAMEI, E.; RAJAGOPALAN, P.; SEYEDMAHMOUDIAN, M.; JAMEI, Y. Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Renewable and Sustainable Energy Reviews, Vol. 54, 1002–1017, 2016. https://doi.org/10.1016/j.rser.2015.10.104

KLEEREKOPER, L.; TALEGHANI, M.; VAN DEN DOBBELSTEEN, A.; HORDIJK, T. Urban measures for hot weather conditions in a temperate climate condition: A review study. Renewable and Sustainable Energy Reviews, Vol. 75, 515–533, 2017. http://dx.doi.org/10.1016/j.rser.2016.11.019

LAI, D.; LIU, W.; GAN, T.; LIU, K; CHEN, Q. A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Science of the Total Environment, Vol. 661, 337–353, 2019. https://doi.org/10.1016/j.scitotenv.2019.01.062

LEE, L.S.H.; JIM, C.Y. Urban woodland on intensive green roof improved outdoor thermal comfort in subtropical summer. International Journal of Biometeorology, Vol. 63, No. 7, 895–909, 2019. https://doi.org/10.1007/s00484-019-01702-4

LIBERALESSO, T.; OLIVEIRA CRUZ, C.; MATOS SILVA, C.; MANSO, M. Green infrastructure and public policies: An international review of green roofs and green walls incentives. Land Use Policy, Vol. 96, 104693, 2020. https://doi.org/10.1016/j.landusepol.2020.104693

LIN, P.; GOU, Z.; LAU, S.S.Y.; QIN, H. The impact of urban design descriptors on outdoor thermalenvironment: A literature review. Energies, Vol. 10, No. 12, 1–19, 2017. https://doi.org/10.3390/en10122151

LIU, Z.; BROWN, R.D.; ZHENG, S.; JIANG, Y.; ZHAO, L. An in-depth analysis of the effect of trees on human energy fluxes. Urban Forestry and Urban Greening, Vol. 50, 126646, 2020. https://doi.org/10.1016/j.ufug.2020.126646

LUCCHESE, J. Application of selected indices on outdoor thermal comfort assessment in Midwest Brazil. International Journal of Energy and Environment, Vol. 7, No. 4, 291–302, 2016.

MONTEIRO, M. V.; BLANUŠA, T.; VERHOEF, A.; HADLEY, P.; CAMERON, R.W. F. Relative importance of transpiration rate and leaf morphological traits for the regulation of leaf temperature. Australian Journal of Botany, Vol. 64, No. 1, 32, 2016. https://doi.org/10.1071/BT15198

MORAKINYO, T.E.; LAI, A.; LAU, K.K.L; NG, E. Thermal benefits of vertical greening in a highdensity city: Case study of Hong Kong. Urban Forestry & Urban Greening, Vol. 37, 42–55, Jan. 1st, 2019. https://doi.org/10.1016/j.ufug.2017.11.010

MORAKINYO, T.E.; LAU, K.K.L.; REN, C.; NG, E. Performance of Hong Kong’s common trees species for outdoor temperature regulation, thermal comfort and energy saving. Building and Environment, Vol. 137, 157–170, 2018. https://doi.org/10.1016/j.buildenv.2018.04.012

OKE, T.R. Boundary layer climates. 2nd ed. No place: no publisher, 1987.

POTCHTER, O.; COHEN, P.; LIN, T.P; MATZARAKIS, A. Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Science of the Total Environment, Vol. 631–632, 390–406, 2018. https://doi.org/10.1016/j.scitotenv.2018.02.276

REIS, C.; LOPES, A. Evaluating the cooling potential of urban green spaces to tackle urban climate change in Lisbon. Sustainability (Switzerland), Vol. 11, No. 9, 2019. https://doi.org/10.3390/su11092480

SANTAMOURIS, M.; OSMOND, P. Increasing green infrastructure in cities: impact on ambient temperature, air quality and heat-related mortality and morbidity. Buildings, Vol. 10, No. 12, 2020. https://doi.org/10.3390/buildings10120233

SILVA, B.; ADÁRIO, J; SILVA, C. Aplicação do Arquivo Climático na Análise do Microclima Urbano da Cidade de Juiz de Fora – Minas Gerais, 2º Seminário de Pesquisa em Ambiente Construído. Juiz de Fora, Brasil. 2019.

SOUZA, C.A.; PARANHOS FILHO, A.C.; GUARALDO, E. Resumo de tese: Determinação do campo térmico a partir da classificação da paisagem dos ambientes climáticos intraurbanos. MIX Sustentável, Vol. 6, No. 4, 167–168, 2020. https://doi.org/10.29183/2447-3073.mix2020

TALEGHANI, M.; KLEEREKOPER, L.; TENPIERIK, M.; VAN DEN DOBBELSTEEN, A. Outdoor thermal comfort within five different urban forms in the Netherlands. Building and Environment, Vol. 83, 65–78, 2015. http://dx.doi.org/10.1016/j.buildenv.2014.03.014

TAN, P. Y.; JIM, C.Y (eds). Greening Cities Forms and Functions. No place: no publisher, 2017. https://doi.org/10.1007/978-981-15-3049-4

TSITOURA, M.; MICHAILIDOU, M.; TSOUTSOS, T. Achieving sustainability through the management of microclimate parameters in Mediterranean urban environments during summer. Sustainable Cities and Society, Vol. 26, 48–64, 2016. https://doi.org/10.1016/j.scs.2016.05.006

TSOKA, S.; TSIKALOUDAKI, K.; THEODOSIOU, T.; BIKAS, D. Urban Warming and Cities’ Microclimates: Investigation Methods and Mitigation Strategies-A Review. ENERGIES, Vol. 13, No. 6, 2020. https://doi.org/10.3390/en13061414

WALTHER, E.; GOESTCHEL, Q. The P.E.T. comfort index: Questioning the model. Building and Environment, Vol. 137, 1–10, 2018. https://doi.org/10.1016/j.buildenv.2018.03.054

YIN, S.; LANG, W.; XIAO, Y. The synergistic effect of street canyons and neighbourhood layout design on pedestrian-level thermal comfort in hot-humid area of China. Sustainable Cities and Society, Vol. 49, 101571, 2019. https://doi.org/10.1016/j.scs.2019.101571

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Life Style


Não há dados estatísticos.